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The choice of free parameters in network models is subjective, since it depends on what topological prop-
erties are being monitored. However, we show that the maximum likelihood �ML� principle indicates a unique,
statistically rigorous parameter choice, associated with a well-defined topological feature. We then find that, if
the ML condition is incompatible with the built-in parameter choice, network models turn out to be intrinsi-
cally ill defined or biased. To overcome this problem, we construct a class of safely unbiased models. We also
propose an extension of these results that leads to the fascinating possibility to extract, only from topological
data, the “hidden variables” underlying network organization, making them “no longer hidden.” We test our
method on World Trade Web data, where we recover the empirical gross domestic product using only topo-
logical information.
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In complex network theory, graph models are systemati-
cally used either as null hypotheses against which real-world
networks are analyzed or as testbeds for the validation of
network formation mechanisms �1�. Until now there has been
no rigorous scheme to define network models. However, here
we use the maximum likelihood �ML� principle to show that
undesired statistical biases naturally arise in graph models,
which in most cases turn out to be ill defined. We then show
that the ML approach constructively indicates a correct defi-
nition of unbiased models. Remarkably, it also allows one to
extract hidden information from real networks, with intrigu-
ing consequences for the understanding of network forma-
tion.

The framework that we introduce here allows one to solve
three related, increasingly complicated problems. First, we
discuss the correct choice of free parameters. Model param-
eters are fixed in such a way that the expected values �i.e.,
ensemble averages over many realizations� of some “refer-
ence” topological property match the empirically observed
ones. But since there are virtually as many properties as we
want to monitor in a network, and surely many more than the
number of model parameters, it is important to ask if the
choice of the reference properties is arbitrary or if a rigorous
criterion exists. We find that the ML method provides us with
a unique, statistically correct parameter choice. Second, we
note that the above ML choice may be in conflict with the
structure of the model itself if the latter is defined in such a
way that the expected value of some property, which is not
the correct one, matches the corresponding empirical one.
We find that the ML method identifies such intrinsically ill-
defined models and can also be used to define safe, unbiased
ones. The third, and perhaps most fascinating, aspect regards
the extraction of information from a real network. Many
models are defined in terms of additional “hidden variables”
�2–5� associated with vertices. The ultimate aim of these
models is to identify the hidden variables with empirically
observable quantities, so that the model will provide a
mechanism of network formation driven by these quantities.
While for a few networks this identification has been carried
out successfully �6,7�, in most cases the hidden variables are
assigned ad hoc. However, since in this case the hidden vari-

ables play essentially the role of free parameters, one is led
again to the original problem: if a nonarbitrary parameter
choice exists, we can infer the hidden variables from real
data. As a profound and exciting consequence, the quantities
underlying network organization are “no longer hidden.”

In order to illustrate how the ML method solves this three-
fold problem successfully, we use equilibrium graph en-
sembles as an example. All network models depend on a set

of parameters that we collectively denote by the vector �� . Let

P�G ���� be the conditional probability of occurrence of a
graph G in the ensemble spanned by the model. For a given
topological property ��G� displayed by a graph G, the ex-
pected value ����� reads

����� � 	
G

��G�P�G���� . �1�

In order to reproduce a real-world network A, one usually

chooses some reference properties 
�i�i and then sets �� to the

“matching value” ��M such that

��i���M
= �i�A� ∀ i . �2�

Our first problem is to determine if this method is statisti-
cally rigorous and what properties have to be chosen anyway.
A simple example is when a real undirected network A with
N vertices and L undirected links is compared with a random
graph where the only parameter is the connection probability
�= p. The common choice for p is such that the expected
number of links, �L�p= pN�N−1� /2, equals the empirical
value L, which yields pM =2L /N�N−1�. But one could alter-
natively choose p in such a way that the expected value �C�
of the clustering coefficient matches the empirical value C,
resulting in the different choice pM =C. Similarly, one could
choose any other reference property � and end up with dif-
ferent values of p. Therefore, in principle, the optimal choice
of p is undetermined due to the arbitrariness of the reference
property.

However, we now show that the ML approach indicates a
unique, statistically correct parameter choice. Consider a ran-
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dom variable v whose probability distribution f�v ��� de-
pends on a parameter �. For a physically realized outcome
v=v�, f�v� ��� represents the likelihood that v� is generated
by the parameter choice �. Therefore, for fixed v�, the opti-
mal choice for � is the value �* maximizing f�v� ��� or
equivalently ����� ln f�v� ���. The ML approach avoids the
drawbacks of other fitting methods, such as the subjective
choice of fitting curves and of the region where the fit is
performed. This is particularly important for networks, often
characterized by broad distributions that may look like
power laws with a certain exponent �subject to statistical
error� in some region, but that may be more closely repro-
duced by another exponent or even by different curves as the
fitting region is changed. By contrast, the ML approach al-
ways yields a unique and rigorous parameter value. Ex-
amples of recent applications of the ML principle to net-
works can be found in �8,9�. In our problem, the likelihood

that a real network A is generated by the parameter choice ��

is

����� � ln P�A���� �3�

and the ML condition for the optimal choice ��* is

�� ����*� = � ������

���


��=��*

= 0� . �4�

This gives a unique solution to our first problem. For in-
stance, in the random graph model we have

P�A�p� = pL�1 − p�N�N−1�/2−L. �5�

Writing the likelihood function ��p�=ln P�A � p� and looking
for the ML value p* such that ���p*�=0 yields

p* =
2L

N�N − 1�
. �6�

Therefore we find that the ML value for p is the one we
obtain by requiring �L�=L. In general, different reference
quantities �for instance, the clustering coefficient� would not
yield the statistically correct ML value.

For the random graph model the above correct choice is
also the most frequently used. However, more complicated
models may be intrinsically ill defined, as there may be no
possibility to match expected and observed values of the
desired reference properties without violating the ML condi-
tion. This is the second problem we anticipated. To illustrate
it, it is enough to consider a slightly more general class of
models, obtained when the links between all pairs of vertices
i , j are drawn with different and independent probabilities

pij���� �2–5�. Now

P�A���� = �
i�j

pij����aij�1 − pij�����1−aij , �7�

where the product runs over vertex pairs �i , j� and aij =1 if i
and j are connected in graph A and aij =0 otherwise. Then
Eq. �3� becomes

����� = 	
i�j

aij ln
pij����

1 − pij����
+ 	

i�j

ln�1 − pij����� . �8�

For instance, in the hidden-variable models �2–4�, pij is a
function of a control parameter ��z and of some quantities
xi and xj, which we assume fixed for the moment. As a first
example, consider the popular bilinear choice �2–5�

pij�z� = zxixj . �9�

Writing ��z�=ln P�A �z� as in Eq. �8� and deriving yields

���z*� = 	
i�j

�aij

z*
−

�1 − aij�xixj

1 − z*xixj
 = 0. �10�

Since 	i�jaij =L, the condition for z* becomes

L = 	
i�j

�1 − aij�
z*xixj

1 − z*xixj

. �11�

This shows that if we set z=z*, then L is in general different
from the expected value �L�z*=	i�jpij�z*�=	i�jz*xixj. This
means that if we want the ML condition to be fulfilled, we
cannot tune the expected number of links to the real one.
Vice versa, if we want the expected number of links to match
the empirical one, we have to set z to a value different from
the statistically correct z* one. The problem is particularly
evident since, setting xi��ki� /��L�, Eq. �9� can be rewritten
as pij = �ki��kj� / �2�L�� �5�. So in order to reproduce a network
with L links we should paradoxically set the built-in param-
eter �L�= �2z�−1 to a ML value which is different from L. In
analogy with the related problem of biased estimators in sta-
tistics, we shall define a biased model as any such model
where the use of Eq. �2� to match expected and observed
properties violates the ML condition. As a second example,
consider the model �6,10,11�

pij�z� =
zxixj

1 + zxixj
. �12�

Writing ��z� and setting ���z*�=0 now yields

L = 	
i�j

z*xixj

1 + z*xixj

, �13�

which now coincides with �L�z*=	i�jpij�z*�, showing that
this model is unbiased: the ML condition �4� and the require-
ment �L�=L are equivalent. In a previous paper �6�, we
showed that this model reproduces the properties of the
World Trade Web �WTW� once xi is set equal to the gross
domestic product �GDP� of the country represented by vertex
i. The parameter z was chosen as in Eq. �13� �6�, and now we
find that this is the correct criterion. We shall again consider
the WTW later on.

The above examples show that while some models are
unbiased, others are “prohibited” by the ML principle. The
problem of bias potentially underlies all network models and
is therefore of great importance. Is there a way to identify the
class of safe, unbiased models? We now show that one large
class of unbiased models can be constructively defined—
namely, the exponential random graphs traditionally used by
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sociologists �12,13� and more recently considered by physi-
cists �11,14–16�. If 
�i�i is a set of topological properties, an
exponential model is defined by the probability

P�G���� = e−H�G����/Z���� , �14�

where H�G �����	i�i�G��i is the graph Hamiltonian and

Z�����	G exp�−H�G ����� is the partition function
�11,14–16�. In the standard approach, one chooses the

matching value ��M fitting the properties of a real network. In
order to check whether this violates the ML principle, we

need to look for the value ��* maximizing the likelihood of
obtaining a network described by a given set 
�i�i of refer-
ence properties. The likelihood function we have defined

reads ������ log P�A ����=−H�A ����−ln Z���� and Eq. �4�
gives for ��*

� ������
��i


��=��*

= �− �i�A� −
1

Z����

�Z����
��i


��=��*

= 0, �15�

whose solution yields the ML condition

�i�A� = 	
G

�i�G�e−H�G���*�/Z���*� = ��i���* ∀ i , �16�

which is equivalent to Eq. �2�: remarkably, ��*=��M and the
model is unbiased. We have thus proved a remarkable result:
any model of the form in Eq. �14� is unbiased under the ML
principle if and only if all the properties 
�i�i included in H
are simultaneously chosen as the reference ones used to tune

the parameters �� . The statistically correct values ��* of the
latter are the solution of the system of �in general coupled�
equations �16�. There are as many such equations as the
number of free parameters. This gives us the following
recipe: if we are defining a model whose predictions will be
matched to a set of properties 
�i�A��i observed in a real-
world network A, we should decide from the beginning what

these reference properties are, include them in H�G ����, and

define P�G ���� as in Eq. �14�. In this way we are sure to
obtain an unbiased model. The random graph is a trivial
special case where ��A�=L and H�G ���=�L with
p��1+e��−1 �11�, and this is the reason why it is unbiased, if
L is chosen as a reference. The hidden-variable model de-
fined by Eq. �12� is another special case where �i�A�=ki and

H�G ����=	i�iki, with xi�e−�i �11�, and so it is unbiased too.
By contrast, Eq. �9� cannot be traced back to Eq. �14�, and
the model is biased. Once the general procedure is set out,
one can look for other special cases. The field of research on
exponential random graphs is currently very active
�11,14–18�, and models including correlations and higher-
order properties are being studied, for instance, to explore
graphs with nontrivial reciprocity �17� and clustering �18�.
For each of these models, our result �16� directly yields the
unbiased parameter choice in terms of the associated refer-
ence properties.

We can now address the third problem. In the cases con-
sidered so far we assumed that the values of the hidden vari-
ables 
xi�i were preassigned to the vertices. This occurs when

we have a candidate quantity to identify with the hidden
variable �6,7�. However, we can reverse the point of view
and extend the ML approach so that, without any prior infor-

mation, the hidden variables are included in �� and treated as
free parameters themselves, to be tuned to their ML values

x

i
*�i. In this way, hidden variables will be no longer “hid-

den,” since they can be extracted from topological data. This
is an exciting possibility that can be applied to any real net-
work. Moreover, this extension of the parameter space also
allows us to match N additional properties besides the overall
number of links. However, the unbiased choice of these
properties must be dictated by the ML principle.

For instance, let us look back at the model defined in Eq.
�12�, now considering xi and xj not as fixed quantities, but as

free parameters exactly as z, to be included in �� . Deriving

�����=��z ,x1 , . . . ,xN� with respect to z gives again Eq. �13�
with xi replaced by x

i
*, and deriving with respect to xi yields

the N additional equations

ki = 	
j�i

z*x
i
*x

j
*

1 + z*x
i
*x

j
*

, i = 1, . . . ,N . �17�

Therefore we find that the N correct reference properties for

this model are the degrees: �ki���*=	 j�ipij���*�=ki. This is not
true in general: the model �9� would imply different refer-
ence properties such that �ki��ki, so that choosing the de-
grees as the properties to match would bias the parameter
choice. Again, this difference arises because Eq. �17�
corresponds to Eq. �16� for the exponential model

H�G ����=	i�iki �11�, while the model in Eq. �9� cannot be
put in an exponential form. We stress that, although Eq. �17�
is formally identical to the familiar expression yielding �ki�
as a function of 
xi�i, if the latter are fixed �11�, its meaning
here is completely reversed: the degrees ki are fixed by ob-
servation and the unknown hidden variables are inferred
from them through the ML condition. This is our key result.
Note that, although determining the x

i
*’s requires solving

N+1 coupled equations �13� and �17�, the number of inde-
pendent expressions is much smaller since �i� Eq. �17� auto-
matically implies Eq. �13�, so we can reabsorb z* in a redefi-
nition of x

i
* and discard Eq. �13�; �ii� all vertices with the

same degree k obey equivalent equations and hence are as-
sociated with the same value x

k
*. So Eq. �17� reduces to

k = 	
k�

P�k��
x

k
*x

k�
*

1 + x
k
*x

k�
* −

�x
k
*�2

1 + �x
k
*�2 , �18�

where P�k� is the number of vertices with degree k, the last
term removes the self-contribution of a vertex to its own
degree, and k and k� take only their empirical values. Hence
the number of nonequivalent equations equals the number of
distinct degrees that are actually observed, which is always
much less than N.

We can test our method on the WTW data, since from the
aforementioned previous study we know that the GDP of
each country plays the role of the hidden variable xi and that
the real WTW is well reproduced by Eq. �12� �6�. We can
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first use Eq. �18� to find the values 
x
i
*�i by exploiting only

topological data �the degrees 
ki�i� and then compare these
values with the empirical GDP of each country i �which is
independent of topological data�, rescaled to its mean to fac-
tor out physical units. As shown in Fig. 1, the two variables
indeed display a linear trend over several orders of magni-
tude. Therefore our method identifies the GDP as the hidden
variable successfully. Clearly, our approach can be used to
uncover hidden factors from other real-world networks, such
as biological and social webs. An example is that of food
web �19� models, where it is assumed that predation prob-
abilities depend on hypothetical niche values ni associated to
each species. Our formalism allows one to extract niche val-
ues directly from empirical food webs, and not from ad hoc
statistical distributions �19�. Another interesting application
is to gene regulatory networks, where the lengths of regula-
tory sequences and promoter regions have been shown to
determine the connection probability pij �20�. Similarly, our

approach allows one to extract the vertex-specific quantities
�such as expansiveness, actractiveness, or mobility-related
parameters� that are commonly assumed to determine the
topology and community structure of social networks
�12,13,21�. In all these cases, the hypotheses can be tested
against real data by plugging any particular form of
pij = p�xi ,xj� into Eq. �8� and looking for the values 
x

i
*�i that

solve Eq. �4�—i.e.,

	
j�i

aij − p�x
i
*,x

j
*�

p�x
i
*,x

j
*��1 − p�x

i
*,x

j
*��

� �p�xi,xj�
�xi


x�=x�*

= 0 ∀ i .

�19�

Note that for Eq. �12� one correctly recovers Eq. �17�. Once
obtained, the values 
x

i
*�i can be compared with the �totally

independent� empirical ones to check for significant correla-
tions, as we have done for the GDP data. Clearly, an impor-
tant open problem to address in the future is understanding
the conditions under which Eq. �19�, and similarly Eq. �18�
for a generic P�k�, can be solved.

We have shown that the ML principle indicates the statis-
tically correct parameter values of network models, making
the choice of reference properties no longer arbitrary. It also
identifies undesired biases in graph models and allows one to
overcome them constructively. Most importantly, it provides
an elegant way to extract information from a network by
uncovering the underlying hidden variables. This possibility,
which we have empirically tested in the case of the World
Trade Web, opens to a variety of applications in economics,
biology, and social science.

Note added. After submission of this article, we became
aware of later studies based on a similar idea �9,22�.
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FIG. 1. ML hidden variables �x
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*� versus GDP rescaled to the

mean �wi� for the WTW �year 2000� and linear fit.
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